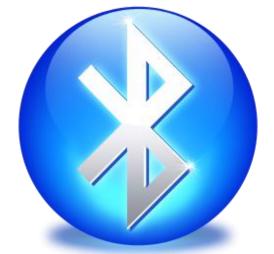

EPA's Interoperable Watersheds Network

- A New Approach for Publishing Continuous Monitoring Data

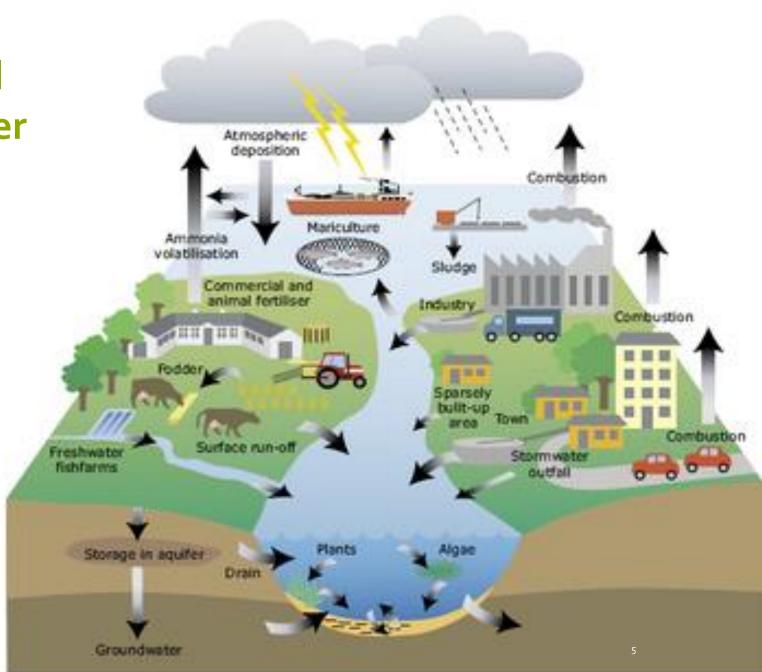
Outline


- An Introduction to 'Standards': The World is Built on Standards!
- What's the problem we're trying to solve?
- How IWN is a step towards solving these problems
 - The Data Standards Problem
 - The Metadata Problem
 - The Architecture Problem
- Currents: The Demonstration Application
- Real.m: A mobile implementation
- Next Steps

The World is Built on Standards!

- When people agree to do things in a common way it opens up many opportunities for everybody to do things better.
 - Technology standards: like Bluetooth and Wifi
 - Data Standards: like financial exchanges
 - Government Standards: like the Exchange Network

The IRS has open standards for electronically filing your taxes, enabling a better user experience



Banking: OFX
Standards enable
you to access
your banking
information from
many 3rd-party
applications

Other Examples of Standards

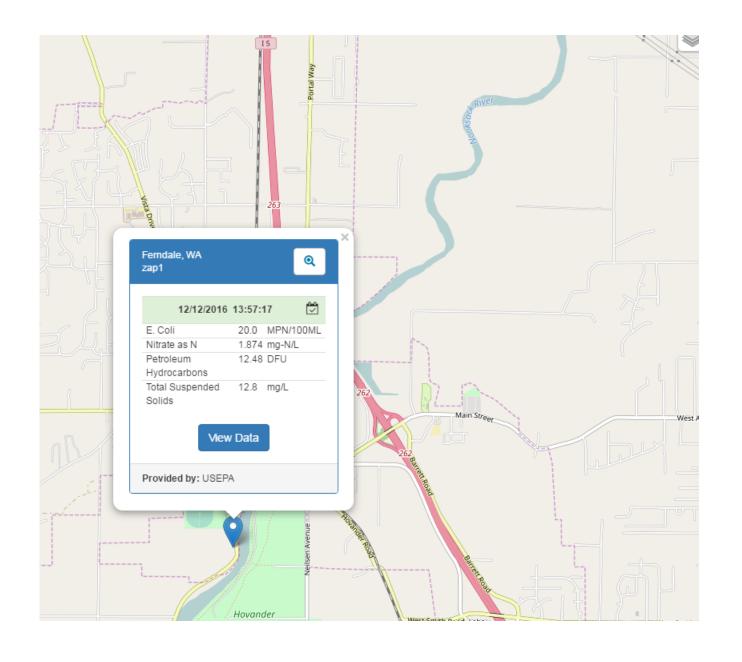
What Would Standardized
Sensor Data Enable: **Better Modeling**

- Models need data, a lot of data
- Sensors are a great input for models, and can provide necessary ground truth
- Imagine being able to run a model without having to first discover and then reformat the data needed to run the model; rather the model can grab the data as it needs it in real time

What Would Standardized Sensor Data Enable: **Third-Party Applications**

- Adopting and promoting standards sends a clear signal to the market that there is value in supporting those standards
- Enables the market to develop solutions for data storage, data sharing, and data visualization
- Allows those outside government to develop applications and tools that are valuable to them and meet their specific needs

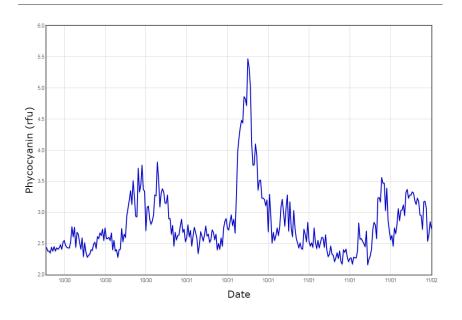
What Would Standardized Sensor Data Enable: Quicker and Better Decisions



- Having standardized data decreases the amount of time needed to spend in discovering and standardizing data
- Reduces errors from handentering data values
- Allows for MORE data to be used (often can't use data that's hard to find or difficult to reformat)

SAVED TIME = SAVED MONEY

How IWN is a Step Towards Solving These Problems


- The Interoperable Watersheds
 Network was a demonstration
 project that focused on evaluating
 approaches to improve sensor
 data sharing
- It was based on knowledge gained from an recommendations report that EPA developed in 2014
- The project focused on addressing three major areas:
 - Data Standards
 - Metadata
 - System Architecture

The Data Standards Problem

- We needed a common way to represent and communicate the data
- Standards for sensor data already exist, there was no need to create new standards
 - OGC Sensor Observation Service
 - OGC Water ML 2 and Sensor ML
- The Open Geospatial Consortium is an open-source, international standards setting body

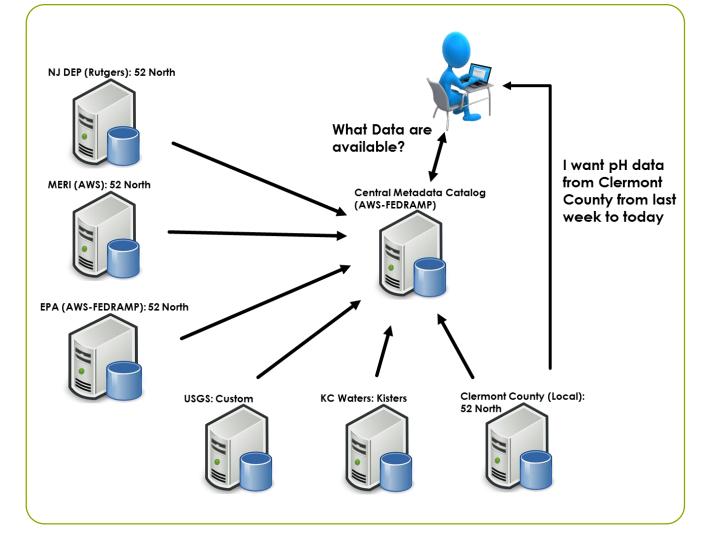
The Metadata Problem

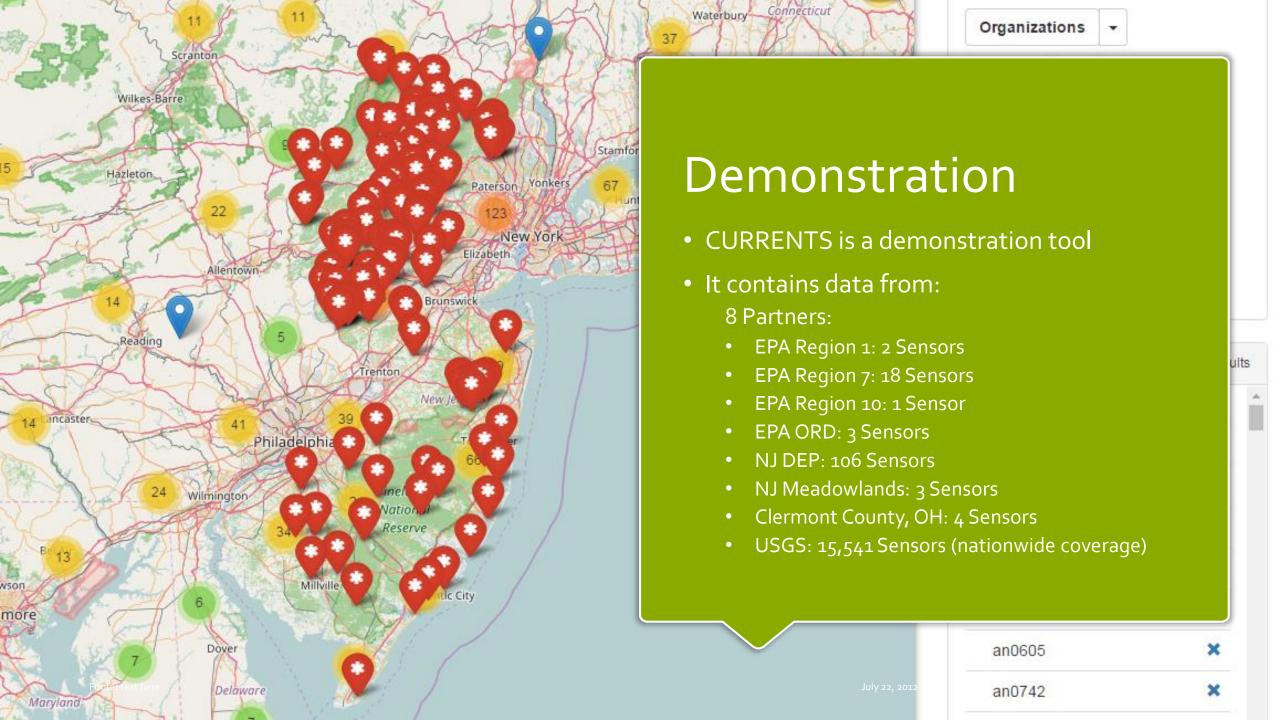
- Needed a standard way to answer the following questions:
 - What data are available and for what parameters?
 - What data can I use?
 - What's the quality of the data?
- IWN had to develop standard ways to do this (no existing standard existed)
- Further work needs to be done in this area as part of the Advanced Monitoring Team

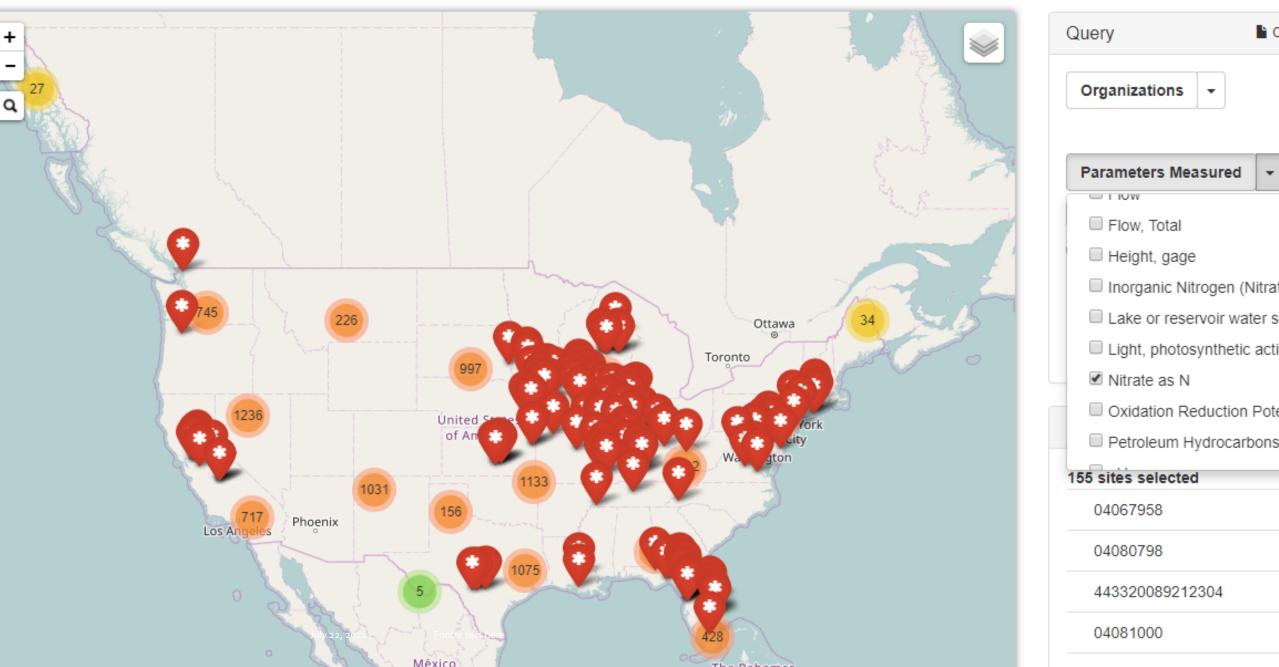
- nitrate* (11/10/2016 02/13/2017)
- oil* (11/10/2016 02/13/2017)
- total_suspended_solids* (11/10/2016 02/13/2017)
- e_coli* (11/10/2016 02/13/2017)

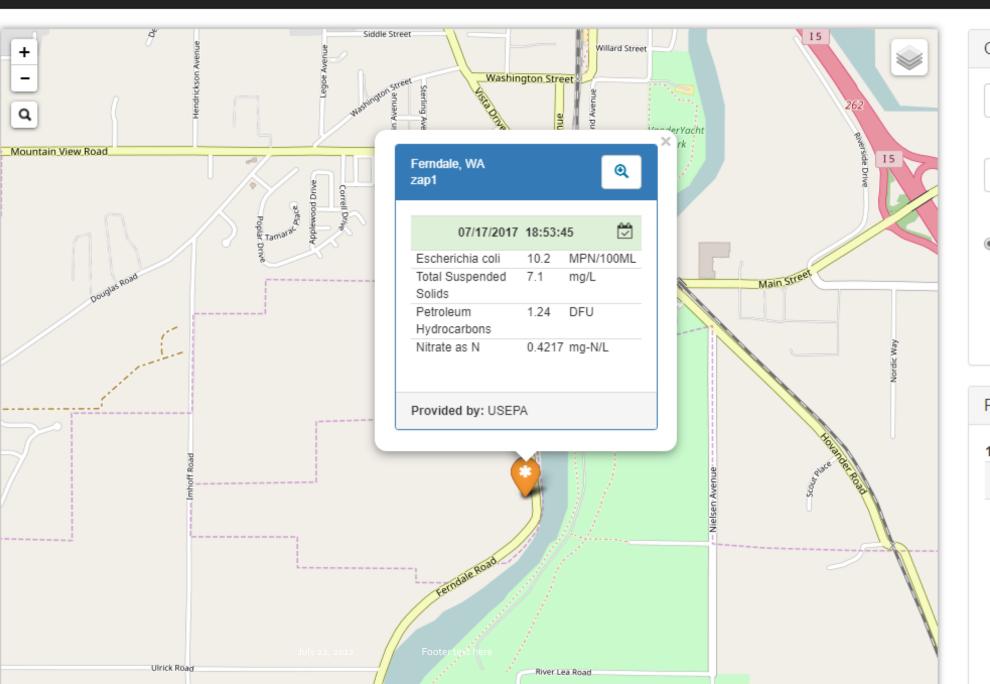
The Architecture Problem

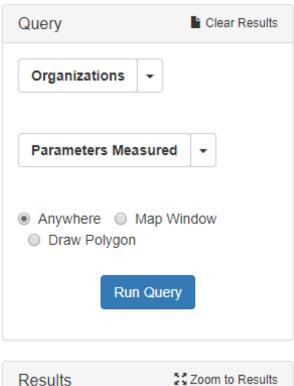
How do you solve the problem of multiple data providers with large amounts of data that have the potential to change every 3-15 minutes?

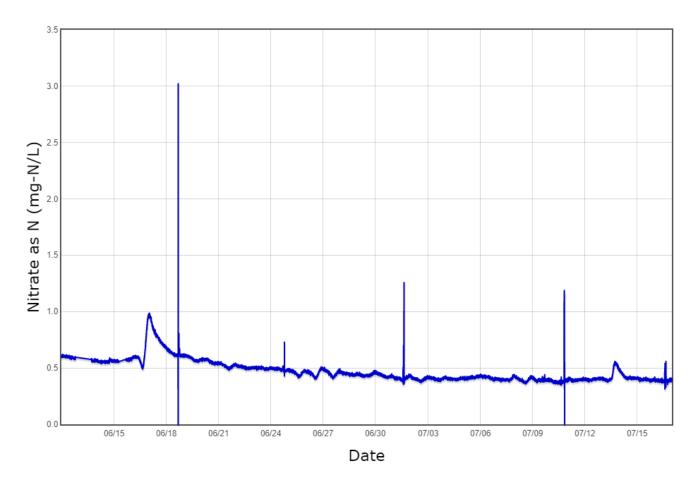

- Used a central catalog/index that references every data owner's assets with the corresponding metadata for each sensor
- Allowed for quick searching and discovery of available data
- This approach is similar to how Google allows you to search the internet
- Actual data comes from the partners systems in real-time











Chart

Currents

zap1

Parameter: Nitrate as N Start Date: 06/12/2017 End Date: 07/16/2017

Gurrents

Chart Advanced Query

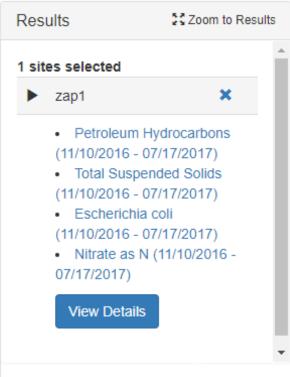
Ferndale, WA (zap1)

Provided by: U.S. EPA

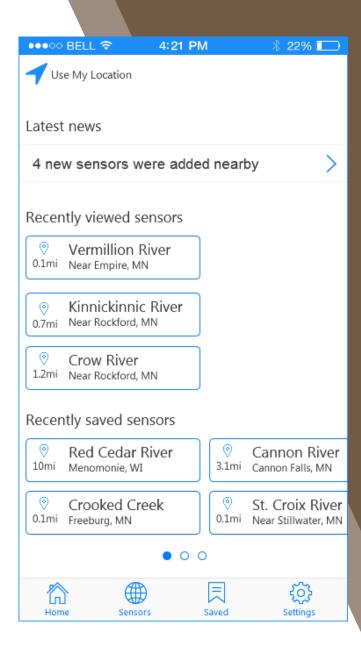
Feature of Interest: urn:x-epaiwpp:feature:epa:epar10:zap1

Also known by: ferndale1, Ferndale Monitor 1

Contact: Dwane Young, IT Specialist, young.dwane@epa.gov

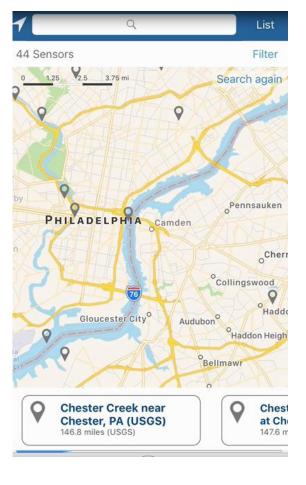

Petroleum Hydrocarbons (oil)	Start Date	End Date
oil (raw)	11/10/2016	07/17/2017
Total Suspended Solids (total_suspended_solids)	Start Date	End Date
total_suspended_solids (raw)	11/10/2016	07/17/2017
Escherichia coli (e_coli)	Start Date	End Date
<pre>e_coli (raw)</pre>	11/10/2016	07/17/2017
Nitrate as N (nitrate)	Start Date	End Date
nitrate (raw)	11/10/2016	07/17/2017

^{*}Parameter is not registered in the catalog.

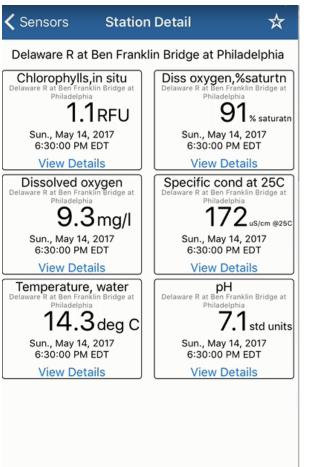

Request Url

http://52.6.7.23/52n-sos-webapp/service? service=SOS&version=2.0.0&request=GetObservation&FeatureOfInterest=urn:x-

А	В	C	D	E	F	G	Н	
sults Period: 07/01/2017 - 07/17/2017								
ture of Interest: Ferr	ndale WA (urn:x-epaiwpp:feature:epa:epar10:zap1)						
ameter: Nitrate as N	(urn:x-epaiwpp:observable:nitrate)							
cedure: raw:nitrate (urn:x-epaiwpp:sensor:epa:epar10:zap1:raw:nitrat	e)						
2	Procedure	Provided	Date	Time	Parameter	Value	Units	Nil Flag
1	raw:nitrate	2017-07-01T00:32:04.000Z	7/1/2017	0:32:04	Nitrate as N	0.4237	mg-N/L	
1	raw:nitrate	2017-07-01T00:34:23.000Z	7/1/2017	0:34:23	Nitrate as N	0.4181	mg-N/L	
1	raw:nitrate	2017-07-01T00:36:42.000Z	7/1/2017	0:36:42	Nitrate as N	0.4221	mg-N/L	
1	raw:nitrate	2017-07-01T00:39:00.000Z	7/1/2017	0:39:00	Nitrate as N	0.4321	mg-N/L	
1	raw:nitrate	2017-07-01T00:41:19.000Z	7/1/2017	0:41:19	Nitrate as N	0.4228	mg-N/L	
1	raw:nitrate	2017-07-01T00:43:38.000Z	7/1/2017	0:43:38	Nitrate as N	0.4237	mg-N/L	
1	raw:nitrate	2017-07-01T00:45:57.000Z	7/1/2017	0:45:57	Nitrate as N	0.4219	mg-N/L	
1	raw:nitrate	2017-07-01T00:48:16.000Z	7/1/2017	0:48:16	Nitrate as N	0.4229	mg-N/L	
1	raw:nitrate	2017-07-01T00:50:34.000Z	7/1/2017	0:50:34	Nitrate as N	0.423	mg-N/L	
1	raw:nitrate	2017-07-01T00:52:53.000Z	7/1/2017	0:52:53	Nitrate as N	0.4215	mg-N/L	
1	raw:nitrate	2017-07-01T00:55:12.000Z	7/1/2017	0:55:12	Nitrate as N	0.4108	mg-N/L	
1	raw:nitrate	2017-07-01T00:57:30.000Z	7/1/2017	0:57:30	Nitrate as N	0.4102	mg-N/L	
1	raw:nitrate	2017-07-01T00:59:49.000Z	7/1/2017	0:59:49	Nitrate as N	0.4128	mg-N/L	
1	raw:nitrate	2017-07-01T01:02:08.000Z	7/1/2017	1:02:08	Nitrate as N	0.4243	mg-N/L	
1	raw:nitrate	2017-07-01T01:11:59.000Z	7/1/2017	1:11:59	Nitrate as N	0.4155	mg-N/L	
1	raw:nitrate	2017-07-01T01:14:12.000Z	7/1/2017	1:14:12	Nitrate as N	0.4178	mg-N/L	
1	raw:nitrate	2017-07-01T01:16:30.000Z	7/1/2017	1:16:30	Nitrate as N	0.4132	mg-N/L	
1	raw:nitrate	2017-07-01T01:18:48.000Z	7/1/2017	1:18:48	Nitrate as N	0.4167	mg-N/L	
1	raw:nitrate	2017-07-01T01:21:07.000Z	7/1/2017	1:21:07	Nitrate as N	0.4182	mg-N/L	
1	raw:nitrate	2017-07-01T01:23:26.000Z	7/1/2017	1:23:26	Nitrate as N	0.4069	mg-N/L	
1	raw:nitrate	2017-07-01T01:32:40.000Z	7/1/2017	1:32:40	Nitrate as N	0.4112	mg-N/L	
1	raw:nitrate	2017-07-01T01:34:59.000Z	7/1/2017	1:34:59	Nitrate as N	0.4182	mg-N/L	
1	raw:nitrate	2017-07-01T01:37:18.000Z	7/1/2017	1:37:18	Nitrate as N	0.4095	mg-N/L	
1	raw:nitrate	2017-07-01T01:39:37.000Z	7/1/2017	1:39:37	Nitrate as N		mg-N/L	
1	raw:nitrate	2017-07-01T01:41:55.000Z	7/1/2017	1:41:55	Nitrate as N		mg-N/L	
1	raw:nitrate	2017-07-01T01:44:14.000Z	7/1/2017		Nitrate as N		mg-N/L	



IWN's Open Architecture Allows Other Possibilities


- IWN is built using an open architecture, meaning that all the functionality you see in the demonstration tool is also available as a corresponding **Web Service** or **Application Program Interface (API)**
- Enables for other apps to be developed (like mobile apps)
- Also allows for other third-party applications (like Excel) to be able to directly interact with the data without having to go to a website and 'download' the data

Real.m in Action

Discover Sensors

See Current Readings

Understand Trends

View Favorite Sites

	Saved Sensors	Edit
		Chlorophyll
•	Delaware R at Ben Franklin Bridge at Philadelphia 161.5 miles (USGS)	1.1 RFU
		Escherichia coli
•	Ferndale, WA 2338.3 miles (USEPA)	15.3 MPML
		Height, gage
•	RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, 10.1 miles (USGS)	4.56ft
•	BEAR RIVER NEAR CORINNE, UT 1840.9 miles (USGS)	12.87 ft
		Nitrate as N
•	ROCK CREEK AT JOYCE RD WASHINGTON, DC 42.1 miles (USGS)	0.74 mgs N

Next Steps

- Demonstration project ended in December
 - A Lessons Learned Report has been completed
 - Demonstration tool will continue to be available
 - A mobile app is being developed that leverages the services/API developed as part of this project
- Demonstration proved to be very successful
 - Services worked better than expected
 - Ease of setting up a data appliance was simpler than anticipated
 - Ready to move to a production-level system
 - Advanced Monitoring Team is exploring if the services and standards would work for Air data as well

QUESTIONS?

Dwane Young
Young.dwane@epa.gov
202-566-1214

Britt Dean

Dean.britt(Depa.gov

202-566-1020

